

European Journal of Cancer 38 (2002) 1832-1837

European Journal of Cancer

www.ejconline.com

Review

Current status and future prospects for the treatment of chemotherapy-induced peripheral neurotoxicity

G. Cavaletti^{a,*}, C. Zanna^b

^aDepartment of Neuroscience and Biomedical Technologies, University of Milan "Bicocca", Monza, Italy
^bSigma-Tau, Pomezia, Italy

Received 22 April 2002; accepted 22 May 2002

1. Introduction

Chemotherapy-induced peripheral neurotoxicity (CIPN) is a major clinical problem because it represents the dose-limiting side-effect of a significant number of antineoplastic drugs [1]. The incidence of CIPN varies depending on the conditions. Severe neuropathy can occur in the range of 3–7% of treated cases with single agents, but can rise up to 38% with polichemotherapy regimens [2–4].

However, even when CIPN is not a dose-limiting side-effect, its onset may severely affect the quality of life of cancer patients and cause chronic discomfort. Currently, no treatment is available which can significantly improve clinical signs and symptoms of CIPN, and thus a major advance in the treatment of cancer patients would be an effective prevention and/or treatment of CIPN. In this paper, we will review the 'state-of-the-art' of CIPN prevention and treatment and we will focus particularly on the future prospects opened up by the most recent preclinical and clinical studies. The most promising neuroprotective drugs, characterised by their stronger pharmacological rationale, as well as by the wider range of preclinical and clinical data, will be discussed.

2. The past and present of neuroprotection in a clinical setting

Currently, CIPN is treated in clinical practice with different approaches usually restricted to symptomatic

E-mail address: guido.cavaletti@unimib.it (G. Cavaletti).

treatment of paraesthesia and pain. These approaches, including the use of ion channel blockers and tricyclic antidepressants, have shown limited success and produced little in the way of clinical evidence. In fact, the number of putative neuroprotective drugs evaluated in the context of large clinical trials is rather limited and, moreover, the methods used to assess the effectiveness of the treatment are not always comparable. Despite this limitation, clinically-relevant conclusions can be drawn at least for the following three drugs.

2.1. ACTH₄₋₉ (Org2766)

This adrenocorticotropic hormone (ACTH) analogue has been extensively evaluated in pre-clinical *in vitro* studies and in animal models of cisplatin- and paclitaxel-induced neuropathy [5,6]. Conflicting results have been obtained in double-blind placebo-controlled clinical trials. In fact, a first study showed a significant neuroprotection by ACTH₄₋₉ and no reduction in the chemotherapy response rate [7], but a second study performed on a series of patients with similar clinical features receiving a higher dose of ACTH ₄₋₉ failed to confirm these results [8].

2.2. *Amifostine* (WR-2771)

Amifostine is an organic thiophosphate that has undergone extensive preclinical evaluation for protection against radiation, cisplatin and alkylating agents toxicity. WR-2771 is a pro-drug which is dephosphorylated to a more active metabolite (WR-1065) by a membrane-bound alkaline phosphatase, which is present mainly in normal tissues. Amifostine reduced the severity of CIPN in cisplatin-treated patients, although

^{*} Corresponding author at: Clinica Neurologica—A.O. S. Gerardo, v. Donizetti 106, 20052 Monza (MI), Italy. Tel.: +39-039-233-3495; fax: +39-02-700-438655.

the differences between the groups was limited [9]. Small studies have been performed in carboplatin and paclitaxel-treated patients, but in this case the neuroprotective effect of amifostine has not been clearly demonstrated [10]. The use of amifostine is frequently associated with the onset of vomiting and transient, but potentially severe, systemic hypotension.

2.3. Reduced glutathione (GSH)

GSH is the major intracellular tripeptide thiol. *In vivo* animal studies have evidenced that GSH reduces the neurotoxicity of cisplatin [11] and *in vitro* experiments have demonstrated that GSH has no effect on its anticancer activity [12]. The use of GSH as a neuroprotectant against CIPN has been evaluated in ovarian cancer patients and it has been demonstrated that the coadministration of GSH reduced the neurotoxicity of cisplatin, without affecting its activity [13,14]. Moreover, GSH's neuroprotective action against chronic oxaliplatin neurotoxicity has also recently been demonstrated [15].

3. The future of neuroprotection: from preclinical results to clinical application

In recent years, new agents have been proposed as neuroprotectants, and some of them have been more specifically studied for CIPN. So far, the most interesting results for future applications have been obtained in the preclinical studies involving cytokines and growth factors. For several of these drugs, in fact, sound hypotheses have been formulated to support the idea of a protective role on selected neuronal targets. However, this theoretical basis has frequently failed to lead to consistent results in preclinical and clinical applications.

3.1. Leukaemia inhibiting factor (LIF, AM424)

The neuroprotective effect of LIF, a 180 amino acids cytokine, has been explored in an animal model of paclitaxel-induced neuropathy in rats [16,17], as well as in phase I and II clinical trials. Despite proof of protection from paclitaxel-induced axonal atrophy in animal models, recent phase II data did not show any clinical improvement suggesting a role for LIF in CIPN treatment and development has been recently discontinued (press release).

3.2. Insulin-like growth factor-I (IGF-I)

IGF-I is a growth factor with a potent effect on nerve regeneration and, possibly, on neuronal survival. IGF-I has been evaluated in clinical trials in patients affected by amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motoneurones, demonstrating that effective plasma levels of the drug can be achieved without inducing severe side-effects [18]. Preclinical studies in mice have evidenced a neuroprotective action against vincristine toxicity [19].

3.3. Neurotrophins

The neurotrophins are a family of growth factors including nerve growth factor (NGF) and neurotrophin-3 (NT-3). Each neuronal class seems to be dependent on a specific neurotrophic factor which exerts its action through a common low-affinity receptor and specific high-affinity tyrosine kinase receptors. The relationship between neurotrophins and sensory neurones is at the basis of the long-standing interest in the use of these factors in the prevention and treatment of sensory CIPN. Moreover, the high-affinity receptors for these substances are almost completely restricted to neurones and they are unable to induce a proliferative response in cancer cells. Although the most interesting results regarding CIPN concern NT-3 and NGF, it should be remembered that most of the details which regulate the interaction between each neurotrophin and the other members of the family are still not completely understood and it is likely that the administration of a single factor also modulates the expression of others.

3.3.1. Neurotrophin-3 (NT-3)

NT-3 is probably the most important neurotrophin for large-sized primary sensory neurones which express significant levels of the specific high-affinity receptor. The effect of the systemic administration of NT-3 has been examined *in vivo* in a rat model of cisplatin neurotoxicity and the results seemed extremely promising [20]. The results of that study have never been confirmed by others and a planned clinical trial regarding the use of NT-3 during cisplatin-treatment has not yet been performed. Very recently, a different experimental approach has been proposed and plasmid DNA encoding murine NT-3 was intramuscularly injected into cisplatin treated rats, with a reduction in the severity of the sensory neuropathy [21].

3.3.2. Nerve growth factor (NGF)

Several *in vitro* studies have been performed using DRG explants or PC12 cell cultures in order to investigate the possible neuroprotective effect of NGF [22—24]. The importance of NGF in the course of CIPN has been further suggested by the findings of Aloe and colleagues [25] who reported that circulating NGF levels are markedly reduced in neuropathic cancer patients who have been treated with different neurotoxic combination chemotherapy schedules. The possibility that exogenous NGF may protect from CIPN has been demonstrated in *in vivo* animal models of cisplatin [26—

Table 1 Summary of the preclinical and clinical results obtained with putative neuroprotectant agents for CIPN

Drug	Proposed mechanism of action	In vivo preclinical evidence for CIPN	Clinical data on CIPN	Clinical development for CIPN	Notes
ACTH _{4–9}	Neurotrophic	Cisplatin	Conflicting results with cisplatin		
		Paclitaxel	•		
AMIFOSTINE	Detoxicant		Conflicting results with cisplatin and other platinum drugs		Tolerability problems
GSH	Detoxicant	Cisplatin	Reduces cisplatin and oxaliplatin toxicity		
LIF	Unknown	Cisplatin	Negative	Discontinued	
IGF-1	Neurotrophic	Vinca alkaloid			Clinical trials in ALS
NT-3	Neurotrophic	Cisplatin		Controlled phase I/II study planned	
NGF	Neurotrophic	Cisplatin			Positive data in human diabetic neuropathy
		Paclitaxel			
ALCAR	NGF-enhancing	Cisplatin	Reduction of paclitaxel and cisplatin CIPN	Phase II studies in CIPN	
		Paclitaxel			
Others					
Glutamate	Unknown	Preliminary data on vincristine cisplatin and paclitaxel	Reduction in vincristine neurotoxicity [46]		
Glutamine	Upregulation of NGF mRNA		Reduction in symptoms induced by paclitaxel treatment [47]		
Purine analogue (AIT-082)	Unknown	Vincristine [48]			
Dimesna (BNP7787)	Reversible inhibition of tubulin polymerisation	Cisplatin and paclitaxel [49,50]		Phase II/III studies for prevention of paclitaxel neurotoxicity planned	
Lithium	Activation of microtubular system	Vincristine	Reduction in vincristine neurotoxicity [51]		Need for larger placebo-controlled, double blind clinical trials and preclinical
Vitamin E	Radical scavenger		Reduction in cisplatin neurotoxicity [52]		studies Larger clinical study completed, evaluation ongoing
Prosaptide	Neurotrophic effect	Cisplatin and paclitaxel [54]	,		
Xaliproden	Upregulation of <i>NGF</i> mRNA	Not available	Not available		Clinical trials in ALS [53]
Glial cell line-derived neurotrophic factor (GDNF)	Interaction with specific receptors	Negative data on cisplatin			
Ciliary neurotrophic factor (CNTF)	Interaction with specific receptors				Severe toxicity in clinical trials in ALS [53]

CIPN, chemotherapy-induced peripheral neurotoxicity; ACTH, adrenocorticotrophic hormone; GSH, glutathione; LIF, leukaemia inhibiting factor; IGF-1, insulin-like growth factor-1; NT-3, neurotrophin-3; NGF, nerve growth factor; ALCAR, acetyl-L-carnitine; ALS, amyotrophic lateral sclerosis.

29] and paclitaxel [30] intoxication. These results are in agreement with the finding that NGF circulating levels decrease during cisplatin administration in rats, and that the decrease is closely correlated with the onset of a peripheral neuropathy [31]. The use of NGF as a neuroprotectant has recently been tested in humans: Apfel and colleagues [32] demonstrated the effectiveness of NGF in the treatment of human diabetic polyneuropathy and the feasibility of long-term treatment. However, the direct administration of NGF to cancer patients would probably be hampered by the severity of the local and systemic side-effects of the administration of the high dose of this substance needed to achieve sufficient bioavailability. In order to circumvent this problem, different approaches should be considered including the implementation also for NGF of the same gene therapy strategies which have already been successfully used in animal models [21] and in humans [33]: such gene therapy might allow the production of biologically-significant amounts of NGF by the transfected tissues.

3.3.3. Neurotrophin-enhancing drugs

A different strategy to increase the levels of neurotrophins, and particularly of NGF, available for the injured target includes the use of drugs able to increase the local concentration of neurotrophins. This theory has already been tested in the central nervous system (CNS) of infant and adult rats [34,35], and a significant increase in the local neurotrophin levels was obtained.

Another substance with a neuroprotective action which is probably mediated, at least in part, through an interaction with NGF is acetyl-L-carnitine (ALCAR). ALCAR is a member of the family of carnitines, a group of natural compounds which have an essential role in intermediary metabolism [36,37]. ALCAR has been shown to have a protective effect in mono or polyneuropathies of different origin [38–40]. Exogenous administration of ALCAR increases NGF levels in the CNS [41] and the rate of transcription of the gene coding for the p75^{NGFR} (the low-affinity NGF receptor) [42]. The relationship between NGF and ALCAR is supported by different experimental results, which demonstrate that ALCAR co-administration allows PC12 cells to be differentiated with sub-optimal doses of NGF. ALCAR co-treatment reduces the severity of cisplatin and paclitaxel neurotoxicity in rat animal models [43,44] and does not interfere with the antitumour activity of both drugs, as assessed in several in vitro and in vivo models using murine and human solid cancer cell

Preliminary clinical results have suggested that treatment with ALCAR downgrades the severity of CIPN induced by cisplatin and/or paclitaxel [45]. Based on this preclinical evidence, clinical trials are currently ongoing in CIPN.

4. Others

Many other drugs have been studied for CIPN treatment either in preclinical or, more rarely, in clinical settings. This is a heterogeneous group of different compounds, most of which have failed to show a confirmed preclinical rationale. Further evidence in preclinical models and, if positive, in large controlled clinical trials is still needed to offer a proper evaluation of these therapeutic options (Table 1).

5. Conclusions

As shown, interesting results have been achieved in the attempt to overcome the clinical problem represented by CIPN. However, none of the strategies available has been fully confirmed in properly designed clinical trials and further efforts are needed in order to demonstrate a favourable impact on patient management. Moreover, a closer interaction between basic and clinical researchers is essential in order to have a more complete comprehension of CIPN and, thus, of the potentially effective drugs. This should allow appropriate clinical trials to be designed with the most promising drugs based on a sounder rationale and with the final aim of providing better treatment opportunities for cancer patients.

References

- Quasthoff S, Hartung HP. Chemotherapy-induced peripheral neuropathy. J Neurol 2002, 249, 9–17.
- Connelly E, Markman M, Kennedy A, et al. Paclitaxel delivered as a 3-hr infusion with cisplatin in patients with gynecologic cancers: unexpected incidence of neurotoxicity. Gynecol Oncol 1996, 62, 166–168.
- De Vita Jr. VT, Hellmann S, Rosemberg SA. Cancer. Principles and Practice of Oncology, 5th edn. Lippincott-Raven, Philadelphia, 1997.
- Rose PG, Blessing JA, Gershenson DM, McGehee R. Paclitaxel and cisplatin as first-line therapy in recurrent or advanced squamous cell carcinoma of the cervix: a gynecologic oncology group study. *J Clin Oncol* 1999, 17, 2676–2680.
- Hamers FP, Pette C, Neijt JP, Gispen WH. The ACTH-(4–9) analog, ORG 2766 prevents taxol-induced neuropathy in rats. Eur J Pharmacol 1993, 233, 177–178.
- van der Hoop GR, Hamers FP, Neijt JP, et al. Protection against cisplatin induced neurotoxicity by ORG 2766: histological and electrophysiological evidence. J Neurol Sci 1994, 126, 109–115.
- van der Hoop GR, Vecht CJ, van der Burg MEL, et al. Prevention of cisplatin neurotoxicity with an ACTH (4–9) analogue in patients with ovarian cancer. N Engl J Med 1990, 322, 89–94.
- Roberts JA, Jenison EL, Kim K, et al. A randomized, multicenter, double-blind, placebo-controlled, dose-finding study of ORG 2766 in the prevention or delay of cisplatin-induced neuropathies in women with ovarian cancer. Gynecol Oncol 1997, 67, 172–177.
- 9. Kemp G, Rose P, Lurain J, et al. Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-

- induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. *J Clin Oncol* 1996, **14**, 2101–2112.
- Selvaggi G, Belani CP. Carboplatin and paclitaxel in non-small cell lung cancer: the role of amifostine. *Semin Oncol* 1999, 26(Suppl. 7), 51–60.
- Cavaletti G, Minoia C, Schieppati M, Tredici G. Protective effects of glutathione in cisplatin neurotoxicity in rats. *Int J Radiat Oncol Biol Phys* 1994, 29, 771–776.
- 12. Tedeschi M, De Cesare A, Oriana S, *et al.* The role of glutathione in combination with cisplatin in the treatment of ovarian cancer. *Cancer Treat Rev* 1991, **18**, 253–259.
- Cascinu S, Cordella L, Del Ferro E, et al. Neuroprotective effect of reduced glutathione on cisplatin-based chemotherapy in advanced gastric cancer: a randomized double-blind placebocontrolled trial. J Clin Oncol 1995, 13, 26–32.
- Smyth JF, Bowman A, Perren T, et al. Glutathione reduces the toxicity and improves quality of life of women diagnosed with ovarian cancer treated with cisplatin: results of a double-blind, randomised trial. Ann Oncol 1997, 8, 569–573.
- Cascinu S, Catalano V, Cordella L, et al. Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized double-blind placebocontrolled trial. J Clin Oncol (in press).
- Boyle FM, Beatson C, Monk R, et al. The experimental neuroprotectant leukaemia inhibitory factor (LIF) does not compromise antitumour activity of paclitaxel, cisplatin and carboplatin. Cancer Chemother Pharmacol 2001, 48, 429–434.
- 17. Kurek J. AM424: history of a novel drug candidate. *Clin Exp Pharmacol Physiol* 2000, **27**, 553–557.
- 18. Turner MR, Parton MJ, Leigh PN. Clinical trials in ALS: an overview. *Semin Neurol* 2001, **21**, 167–175.
- 19. Apfel SC, Arezzo JC, Lewis ME, Kessler JA. The use of insulinlike growth factor I in the prevention of vincristine neuropathy in mice. *Ann N Y Acad Sci* 1993, **692**, 243–245.
- Gao W-Q, Dybdal N, Shinsky N, et al. Neurotrophin-3 reverses experimental cisplatin-induced peripheral sensory neuropathy. Ann Neurol 1995, 38, 30–37.
- 21. Pradat PF, Finiels F, Kennel P, *et al.* Partial prevention of cisplatin-induced neuropathy by electroporation-mediated nonviral gene transfer. *Hum Gene Ther* 2001, **12**, 367–375.
- Gill JS, Windebank AJ. Cisplatin-induced apoptosis in rat dorsal root ganglion neurons is associated with attempted entry into the cell cycle. *J Clin Inv* 1998, 101, 2842–2850.
- 23. Konings PNM, Makkink WK, van Delft AML, Ruigt GSF. Reversal by NGF of cytostatic drug-induced reduction of neurite outgrowth in rat dorsal root ganglia in vitro. *Brain Res* 1994, **640**, 195–204.
- 24. Malgrange B, Delrée P, Rigo JM, et al. Image analysis of neurite regeneration by adult rat dorsal root ganglion neurons in culture: quantification of the neurotoxicity of anticancer agents and its prevention by nerve growth factor or fibroblast growth factor but not brain-derived neurotrophic factor or neurotrophin-3. J Neurosci Meth 1994, 53, 111–122.
- De Santis S, Pace A, Bove L, et al. Patients treated with antitumor drugs displaying neurological deficits are characterized by a low circulating level of nerve growth factor. Clin Canc Res 2000, 6, 90–95.
- 26. Aloe L, Manni L, Properzi F, *et al.* Evidence that nerve growth factor promotes the recovery of peripheral neuropathy induced in mice by cisplatin: behavioral, structural and biochemical analysis. *Auton Neurosci* 2000, **86**, 84–93.
- Apfel SC, Arezzo JC, Lipson LA, Kessler JA. Nerve growth factor prevents experimental cisplatin neuropathy. *Ann Neurol* 1992, 31, 76–80.
- 28. Schmidt Y, Unger I, Bartke R, Reiter R. Effect of nerve growth factor on peptide neurons in dorsal root ganglia after taxol or cisplatin treatment and in diabetic (cd/db) mice. *Exp Neurol* 1995, **132**, 16–23.

- Tredici G, Braga M, Nicolini G, et al. Effect of recombinant human nerve growth factor on cisplatin neurotoxicity in rats. Exp Neurol 1999, 159, 551–558.
- Apfel SC, Lipton RB, Arezzo JC, Kessler JA. Nerve growth factor prevents toxic neuropathy in mice. *Ann Neurol* 1991, 29, 87–90.
- Cavaletti G, Pezzoni G, Pisano C, et al. Cisplatin-induced peripheral neurotoxicity in rats reduces the circulating levels of nerve growth factor. Neurosci Lett 2002, 322, 103–106.
- 32. Apfel SC, Kessler JA, Adornato BT, *et al.* Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. *Neurology* 1998, **51**, 695–702.
- Simivic D, Isner JM, Ropper AH, et al. Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol 2001, 58, 761–768.
- 34. Nitta A, Ogihara Y, Onishi J, et al. Oral administration of propentofylline, a stimulator of nerve growth factor (NGF) synthesis, recovers cholinergic neuronal dysfunction induced by the infusion of anti-NGF antibody into the rat septum. Behav Brain Res 1997, 83, 201–204.
- Saita K, Ohi T, Hanaoka Y, et al. Effect of 4-methylcatechol, a stimulator of endogenous nerve growth factor synthesis, on experimental acrylamide-induced neuropathy in rats. Neurotoxicol 1995, 16, 403–412.
- Fritz IB, Yue KTN. Long chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine. *J Lipid Res* 1963, 4, 279.
- 37. Bieber LL. Carnitine. Ann Rev Biochem 1988, 57, 261-283.
- Lowitt S, Malone JI, Salem AF, et al. Acetyl-L-carnitine corrects the altered peripheral nerve function of experimental diabetes. Metab Clin Exp 1995, 44, 677–680.
- Di Giulio AM, Lesma E, Gorio A. Diabetic neuropathy in the rat: 1. ALCAR augments the reduced levels and axoplasmic transport of substance P. J Neurosci Res 1995, 40, 414–419.
- Kano M, Kawakami T, Hori H, et al. Effects of ALCAR on the fast axoplasmic transport in cultured sensory neurons of streptozotocin-induced diabetic rats. Neurosci Res Mar 1999, 33, 207– 213.
- Piovesan P, Pacifici L, Taglialatela G, et al. Acetyl-L-carnitine treatment increases choline acetyltransferase activity and NGF levels in the CNS of adult rats following total fimbria-fornix transection. Brain Res 1994, 633, 77–82.
- Foreman PJ, Perez-Polo JR, Angelucci L, et al. Effects of acetyl-L-carnitine treatment and stress exposure on the nerve growth factor receptor (p75NGFR) mRNA level in the central nervous system of aged rats. Prog Neuropsychopharmacol Biol Psychiatry 1995, 19, 117–133.
- Pisano C, Vesci L, Bellucci A, et al. Acetyl-L-carnitine protects from peripheral neuropathy and reduces bone marrow injury in taxol-treated mice. Proc Am Assoc Cancer Res 2000, 41, 607.
- Tredici G, Marmiroli P, Zoia C, et al. Relationship between acetyl-L-carnitine and nerve growth factor: results of in vitro and in vivo neuroprotection studies. J. Neurol. 2002 249(Suppl. 1), 28.
- Maestri A, De Pasquale Ceratti A, Calandri C, et al. Acetyl-Lcarnitine (ALCAR) in patients with chemotherapy-induced peripheral sensory neuropathy. Proc Am Soc Clin Oncol 2002, 21, 2476
- Boyle FM, Wheeler HR, Shenfield GM. Glutamate ameliorates experimental vincristine neuropathy. J Pharm Exp Ther 1996, 279, 410–415.
- Vahdat L, Papadopoulos K, Lange D, et al. Reduction of paclitaxel-induced peripheral neuropathy with glutamine. Clin Cancer Res 2001, 7, 1192–1197.
- Foreman M, Taylor EM, Jenkins S, et al. Effects of AIT-082 (NeotrofinTM) on peripheral neuropathy induced by vincristine treatments in rats. In Proc AACR-NCI-EORTC Int Conference, Miami, 2001.

- Cavalletti E, Cavaletti G, Tredici G, et al. Oral and intravenous BNP7787 protects against paclitaxel-mediated neurotoxicity in wistar rats. Proc Am Assoc Cancer Res 1999, 40, 398.
- Hausheer F, Cavaletti G, Tredici G, et al. Oral and intravenous BNP7787 protects against platinum neurotoxicity without in vitro and in vivo tumor protection. Proc 90th Am Assoc Cancer Res 1999, 40, 398.
- 51. Petrini M, Vaglini F, Cervetti G, et al. Is lithium able to reverse neurological damage induced by vinca alkaloids? *J Neural Transm* 1999, **106**, 569–575.
- 52. Bove L, Picardo M, Maresca V, Jandolo B, Pace A. A pilot study on the relationship between cisplatin neuropathy and vitamin E. *J Exp Clin Cancer Res* 2001, **20**, 277–280.
- 53. Turner MR, Parton MJ, Leigh PN. Clinical trials in ALS: an overview. *Semin Neurol* 2001, **21**, 167–175.
- Campana WM, Eskeland N, Calcutt NA, et al. Prosaptide prevents paclitaxel neurotoxicity. Neurotoxicology 1998, 19, 237– 244.